DET1 and HY5 Control PIF4-Mediated Thermosensory Elongation Growth through Distinct Mechanisms
نویسندگان
چکیده
Plant growth and development are defined by environmental cues. The transcription factor PHYTOCHROME INTERACTING FACTOR 4 (PIF4) is the central signaling hub that integrates environmental cues, including light and temperature, to regulate growth and development. The thermosensory mechanisms controlling the PIF4-mediated temperature response, and its integration with other environmental responses, remain poorly understood. DE-ETIOLATED 1 (DET1) and CONSTITUTIVE PHOTOMORPHOGENESIS 1 (COP1), key regulators of light signaling, have been proposed to control thermosensory growth by transcriptional regulation of PIF4, through ELONGATED HYPOCOTYL 5 (HY5). Here, we show that DET1/COP1 and HY5 regulate thermosensory elongation through distinct mechanisms. DET1 and COP1 are essential for promoting PIF4 expression and stabilizing PIF4 protein. Furthermore, HY5 inhibits elongation growth through competitive chromatin binding to PIF4 targets, not through transcriptional regulation of PIF4. Our findings reveal a mechanistic framework in which DET1/COP1 and HY5 regulatory modules act independently to regulate growth through the environmental signal integrator PIF4.
منابع مشابه
The DET1-COP1-HY5 pathway constitutes a multipurpose signaling module regulating plant photomorphogenesis and thermomorphogenesis.
Developmental plasticity enables plants to respond to elevated ambient temperatures by adapting their shoot architecture. On the cellular level, the basic-helix-loop-helix (bHLH) transcription factor phytochrome interacting factor 4 (PIF4) coordinates this response by activating hormonal modules that in turn regulate growth. In addition to an unknown temperature-sensing mechanism, it is current...
متن کاملPIF4 Coordinates Thermosensory Growth and Immunity in Arabidopsis
Temperature is a key seasonal signal that shapes plant growth. Elevated ambient temperature accelerates growth and developmental transitions [1] while compromising plant defenses, leading to increased susceptibility [2, 3]. Suppression of immunity at elevated temperature is at the interface of trade-off between growth and defense [2, 4]. Climate change and the increase in average growth-season ...
متن کاملCryptochrome 1 interacts with PIF4 to regulate high temperature-mediated hypocotyl elongation in response to blue light.
Cryptochrome 1 (CRY1) is a blue light receptor that mediates primarily blue-light inhibition of hypocotyl elongation. Very little is known of the mechanisms by which CRY1 affects growth. Blue light and temperature are two key environmental signals that profoundly affect plant growth and development, but how these two abiotic factors integrate remains largely unknown. Here, we show that blue lig...
متن کاملPhytochrome-interacting factor 4 (PIF4) regulates auxin biosynthesis at high temperature.
At high ambient temperature, plants display dramatic stem elongation in an adaptive response to heat. This response is mediated by elevated levels of the phytohormone auxin and requires auxin biosynthesis, signaling, and transport pathways. The mechanisms by which higher temperature results in greater auxin accumulation are unknown, however. A basic helix-loop-helix transcription factor, PHYTOC...
متن کاملELF3-PIF4 Interaction Regulates Plant Growth Independently of the Evening Complex
The circadian clock plays a pivotal role in the control of Arabidopsis hypocotyl elongation by regulating rhythmic expression of the bHLH factors PHYTOCHROME INTERACTING FACTOR 4 and 5 (PIF4 and 5). Coincidence of increased PIF4/PIF5 transcript levels with the dark period allows nuclear accumulation of these factors, and in short days it phases maximal hypocotyl growth at dawn. During early nig...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 18 شماره
صفحات -
تاریخ انتشار 2017